Initiation and propagation of calcium-dependent action potentials in a coupled network of olfactory interneurons.
نویسندگان
چکیده
Coherent oscillatory electrical activity and apical-basal wave propagation have been described previously in the procerebral (PC) lobe, an olfactory center of the terrestrial slug Limax maximus. In this study, we investigate the physiological basis of oscillatory activity and wave propagation in the PC lobe. Calcium green dextran was locally deposited in the PC lobe; this led to cellular uptake and transport of dye by bursting and nonbursting neurons of the PC lobe. The change of intracellular calcium concentration was measured at several different positions in neurites of individual bursting neurons in the PC lobe with a two-photon laser-scanning microscope. Fluorescence measurements were also made from neurons intracellularly injected with calcium green-1. Two different morphological classes of bursting neurons were found, varicose (VB) and smooth (SB). Our results from concurrent optical and intracellular recordings suggest that Ca2+ is the major carrier for the inward current during action potentials of bursting neurons. Intracellular recordings from bursting neurons with nystatin perforated-patch electrodes made while simultaneously recording the local field potential (LFP) with extracellular electrodes indicate that the burster spikes are precisely phase-locked to the periodic LFP events. By referencing successive calcium measurements to the common LFP signal, we could therefore accurately determine the relative timing of calcium transients at different points along a neurite. Measuring the relation of temporal to spatial differences allowed us to estimate the velocity of action potential propagation, which was 4.3 +/- 0.2 (SE) mm/s in VBs, and 1.3 +/- 0.2 mm/s in SB.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملPresynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle.
Presynaptic regulation of transmission at the first olfactory synapse was investigated by selectively imaging axon terminals of receptor neurons in the lobster olfactory lobe and turtle olfactory bulb. In both species, action potential propagation into axon terminals after olfactory nerve stimulation was measured using voltage-sensitive dyes. In addition, in the turtle, calcium influx into term...
متن کاملAction potential propagation in dendrites of rat mitral cells in vivo.
Odors evoke beta-gamma frequency field potential oscillations in the olfactory systems of awake and anesthetized vertebrates. In the rat olfactory bulb, these oscillations reflect the synchronous discharges of mitral cells that result from both their intrinsic membrane properties and their dendrodendritic interactions with local inhibitory interneurons. Activation of dendrodendritic synapses is...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2001